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Summary

This investigation is concerned with the deformations and stresses

in a slab of all-around infinite extent containing a traction-free plane

crack, under conditions of plane strain. The analysis is carried out

within the framework of the fully nonlinear equilibrium theory of homo-

geneous and isotropic incompressible elastic solids. For a fairly wide

class of such materials and general loading conditions at infinity, as-

symptotic estimates appropriate to the various field quantities near the

crack-tips are deduced. For a subclass of the materials considered, these

results - in contrast to the analogous predictions of the linearized

theory - lead to the conclusion that the crack opens up in the neighborhood

of its tips even if the applied loading is antisymmetric about the plane

of the crack, (e.g., Mode II loading). It is shown further that the non-

linear global crack problem corresponding to such a loading in general

cannot admit an antisywnetric solution.

The results communicated in this paper were obtained in the course of an
investigation supported in part by Contract N00014-75-C-0196 with the
Office of Naval Research in Washington, D.C.
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Introduction

Early investigations of crack problems beyond the scope of the clas-

sical theory of elasticity typically retain the kinematic assumption of

infinitesimal deformations while relinquishing the linear stress-strain

law in favor of nonlinear constitutive relations of one kind or another.1

Apparently the first investigation of a crack problem within the fully

nonlinear equilibrium theory of elastic materials is due to Wong and Shield

[2]. In [2] an approximative global solution is obtained to the problem

of a finite crack in an all-around infinite thin incompressible sheet of

a neo-Hookean material, subjected to biaxial tension at infinity, on the

assumption that the deformations are large throughout the sheet.

Knowles and Sternberg [3], [4] deal with the problem of an infinite

slab of a compressible elastic material containing a plane traction-free

crack, within the equilibrium theory of finite plane strain; they restrict

their attention to a loading of uniaxial tension at right angles to the

plane of the crack (Mode I loading) and analyze the structure of the en-

suing elastostatic field near the crack-tips. The Mode III crack prob-

lem, in which the loading at infinity is one of longitudinal shear parallel

to the edges of the crack, is explored asymptotically in the finite theory

for a class of incompressible elastic materials by Knowles (5]. Additional

work on the nonlinear Mode III problem may be found in [6], [7], [8]. The

investigations referred to above, as well as some related studies in finite

elastostatics, are reviewed in several survey papers [9], [101, [111, [12].

1See, for example, a comprehensive survey by Rice [1].
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The present study, which is also set within finite elastostatics,

retains the body geometry underlying [31, [41, as well as the assumption

of plane strain, but supposes the material to be incompressible. The

particular constitutive assumptions introduced here allow for both harden-

ing and softening behavior in simple shear, but preclude a loss of ellip-
1

ticity of the governing displacement equations of equilibrium. In ad-

dition, more general loading conditions at infinity are considered, so as

to encompass in particular the Mode II loading of simple shear parallel

to the crack faces.

Section I contains a review of some prerequisites from the finite

theory of plane strain for homogeneous, isotropic incompressible elastic

solids and introduces a particular class of materials underlying the sub-

sequent analysis. In Section 2 we formulate the global crack problem

with which we are concerned and recall certain properties of the solution

to the analogous crack problem in the linearized theory. We then show

that, at least for the Mooney-Rivlin material, the global nonlinear Mode II

problem, in contrast to its counterpart in the linear theory, does not

admit a solution antisymmetric about the plane of the crack. Section 3

and Section 4 are devoted to an asymptotic analysis of the elastostatic

field near the crack-tips. Finally Section 5 contains a discussion of

the main conclusions reached concerning the ensuing local deformation and

stresses.

1A potential loss of ellipticity in the context of the Mode III prob-

lem is provided for in [7], [8].
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1. Preliminaries from the finite theory of plane strain for incompres-

sible elastic solids

Throughout this paper we shall be concerned with plane finite

elastostatics of homogeneous and isotropic incompressible materials,

in the absence of body forces. Consider a body which in an undeformed

configuration occupies a cylindrical region of space. Denote by 11

the open projection of this region onto a plane that is perpendicular

to the generators of the lateral boundary. Introduce a two-dimensional

rectangular cartesian coordinate system in this plane and thus let

(xl, x2) be coordinates associated with the position vector1 x.

A plane deformation of the body parallel to the (x1, x2)-plane

is characterized by the mapping

y= (x) -x+u(x) on H . (1.1)

Thus y is the position vector of points in the deformation image

1*-9(11), while u is the displacement field. We suppose the function

y to be twice continuously differentiable on H, and the mapping (1.1)

to be invertible.

Let F be the associated deformation-gradient field, so that

F -V on 11 (1.2)

Since the body is incompressible, the deformation (1.1) must be locally

'Here and in what follows, letters underlined by a tilde designate
vectors and second-order tensors in two dimensions.



-4- [

volume-preserving and hence

JfdetF-l on T . (1.3)

Further, let

Iu-trFTF on 1 . (1.4)1

With the aid of (1.3), the scalar deformation invariant I is readily

found to obey

I>.2 on 1 , (1.5)

and 1-2 only in an undeformed configuration.

Next, let T stand for the two-dimensional Cauchy (true) stress-

tensor field, regarded as a function of position on 'R*. For an equi-

librium deformation, in the absence of body forces,

diVT=O0 T T on (1.6)

If a designates the associated Piola (nominal) stress field on R, one

has in view of (1.3),

-T 2
o(x)- T(j(x))F T() for all x in R . (1.7)

In terms of the nominal stresses, the equilibrium equations (1.6) become

diva= o, a F on . (1.8)

'The superscript T indicates transposition.

2 Here F-T denotes the inverse of F



Is

For future reference we also recall the following result. Suppose

r is a regular arc in TI, and r*- (r) its image in 11. Next let n

and n* be the oriented unit normal vectors of r and r*, respectively,

and denote by s and t the Piola and Cauchy traction vectors defined by

swan on r , t-Tn* on r* (1.9)

Then,

s= 0 on r if and only if t= 0 on r* . (1.10)

Moreover, if the deformation and the nominal stress field are suitably

regular in the closure of R, (1.10) continues to hold true for an arc

r on the boundary of H. The foregoing result thus enables one to im-

pose boundary conditions at a traction-free edge witbout involving the

unknown deformation image of such a part of the boundary.

Suppose now the elastic solid under consideration possesses an

elastic potential, and let W stand for the strain-energy density per

unit undeformed volume, regarded as a function of position on T. For

plane deformations of a homogeneous and isotropic incompressible elastic

solid, W depends on the material position vector exclusively through

the deformation invariant I. Hence,

W(x) W(Ix)) for all x in , (1.n)

where W(I) is the plane-strain elastic potential. The appropriate

constitutive law, as far as the in-plane stress response is concerned,

now becomes
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C= 2W' (I) F- pt on 11 (1.12)

in which W is the derivative of W, while p is an arbitrary hydro-

static pressure field arising from the constraint of incompressibility.

In view of (1.12), the second of the equilibrium equations (1.8) is

satisfied a priori.

We now turn to certain restrictions to which the elastic potential

W(1) is subject. First, we shall take for granted that

W(I)>0 for 1>2, W(2)=0 , (1.13)

so that in particular the strain-energy density vanishes in the undeformed

state. Next, according to the relevant Baker-Ericksen inequality,

0

W"(I)>0 for I>2 . (1.14)

This inequality admits a simple physical interpretation in the context

of a plane homogeneous deformation corresponding to simple shear. In

this case, the components of the deformation-gradient tensor are given by

in which k is the amount of shear. It follows from (1.12), (1.7) that

for such a deformation the true shearing-stress component T1 2 obeys

TI 2 -'(k) - 2kW' (2+k 2 ) , (1.16)

1Greek subscripts have the range (1,2) and summation over repeated sub-

scripts is implied.
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and we henceforth refer to the graph of T(k) as the response curve

for simple shear. The inequality (1.14) thus holds provided T(k)

and k have the same sign, as demanded by obvious physical considerations.

Finally, we recall from Abeyaratne [131 that the pertinent displace-

ment equations of equilibrium - obtained by elimination of a between

(1.8), (1.12) and subject to the constraint (1.3) - are elliptic at a

solution u and at a material point x if and only if

2W "(I)
W(1) #0 0 '1 (1- 2)+1>0 ,(1.17)

where I- I(xO is the associated value of the deformation invariant de-

fined in (1.4). The first of these inequalities is assured by (1.14),

while the second is readily seen to be equivalent to the requirement

that the slope of the response curve for simple shear be non-negative at

k -. I-2

At this point we introduce a particular class of incompressible

elastic materials, hereafter referred to as power-law materials, which

will play an important part in the analysis to follow. This class of

materials is characterized by

(IAIn +Inl+ .(n-i

W(+ o(In - ) as In , (1.18)

in which A, B and n are constants with A and n positive. We

shall assume further that the asymptotic identities obtained by two suc-

cessive formal differentiations of (1.18) are also valid. It should be

emphasized that (1.18) merely stipulates the asymptotic behavior of the

elastic potential at large values of I, and does not otherwise restrict
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its specific form. A special case of an incompressible material con-

forming to (1.18) is supplied by the Mooney-Rivlin material, with the

complete plane-strain elastic potential

(I) R (1 -2) (1.19) -

This particular potential evidently satisfies (1.18) with n= 1, A= p/2,

B= -i

According to (1.16), the response of a power-law material in simple

shear obeys

T(k)= 2nAk 2n-+ o(k 2n- ) as k-m . (1.20)

The corresponding response curve, for a range of vales of the parameter

n, is indicated in Figure 1. For n>1 the material hardens under

simple shear, for n< I it softens, while for n = 1 the response function

T(k) is asymptotically linear. For this reason we shall from here on refer

to n as the "hardening parameter." When n =1/2, T(k)- A as k-co;

when n< 1/2, T(k) is bound to reach a maximum beyond which it monoton-

ically declines to zero. Such a "collapse under shear" is, as previously

remarked, associated with a possible loss of ellipticity of the governing

field equations. In contrast, if n>1/2 , the ellipticity conditions are

necessarily met at all sufficiently large values of I.
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2. Formulation of the global crack problem. Global considerations.

We proceed here to the global formulation of the problem with which

we are concerned. Let X be the straight-line segment

X= 1xx 2 =0, -b5x 1 sb ]  , (2.1)

and suppose H to be the region exterior to S, as indicated in Figure 2.

Accordingly, the undeformed body is an all-around infinite slab containing

a plane crack of length 2b. We shall assume that the faces of the crack

are traction-free and that a known homogeneous state of plane deformation

prevails at infinity.

The problem to be considered may be stated as follows. Given an

elastic potential W(I), we seek a suitably regular plane deformation y

on 11, subject to (1.3), as well as a nominal stress field a and a pres-

sure field p such that (1.12) holds, while a satisfies the equilibrium

equations (1.8); in addition y is to be consistent with the pre-assigned

deformation at infinity, whereas a should conform to the boundary condi-

tion for the crack faces. The latter, in view of (1.10), are satisfied

provided

aa 2(xlO+)=0, o 2(xl,0-)=0 (-b< x1 <b) (2.2)

Finally, we stipulate that

2 2y(x)-Fx+0(1) as x+x oo, detF , (2.3)
4-41 2-
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where F is a constant tensor.

The function Y^ should be twice continuously differentiable on

HI, as required before, and continuous up to X, while F is to be con-

tinuous up to the interior of Z. Further, we assume that is twice

continuously differentiable on [2,oo) and throughout its interval of

definition meets the ellipticity conditions (1.17). Thus, taking for

granted the existence of a solution to the global problem at hand, el-

lipticity is bound to prevail on IT, and is assured to have continuous

partial derivatives of all orders on 11.

Let J9 be the class of all C3, apI that satisfy the field equa-

tions referred to above, as well as the boundary conditions (2.2). Clearly,

a solution to the complete problem formulated above belongs to J&; con-

versely any member of J& that meets condition (2.3) is a solution to this

problem. For future purposes it is essential to note that if [9, C19pi

is in h, the same is true of [Q^, Qar p] for every proper orthogonal
s -~d

tensor 2. This claim is readily confirmed because of the objectivity

of the constitutive law (1.12) and by virtue of the form of the boundary

conditions (2.2).

At this stage we recall certain properties of the familiar solutions

to the analogous crack problem within the linearized equilibrium theoryI of plane strain, which encompass both compressible and incompressible elas-

tic solids. 1In view of the principle of superposition it is sufficient

in this connection to consider separately the following two loading modes

at infinity.

1See for example Rice [1].



Mode I: Y o(1), a -+o(l) as x +x 00 , (2.4)
Mod : la 22

2 2
Mode II: oia* 2 2  o(1), ao1 2 c+o(1) as x1 +x2 -oo . (2.5)

Thus Mode I corresponds to uniform uniaxial tension perpendicular to the

crack faces, while Mode II corresponds to simple shear parallel to the

crack faces.

For the Mode I loading the resulting displacement field is symmetric

about the x1-axis, so that

Il(xlX) = 1(xl1,- x2), u2 (xl,x 2) = -u2 (xl,-x2) . (2.6)

On the other hand, the displacement field associated with Mode II is anti-

symmetric, whence

ul(xlx 2) = 1- l(Xl,-x 2 ), 2 (Xlx 2) u2 (x1 ,-x 2 ) . (2.7)

Further, the crack faces in Mode II undergo an in-plane gliding deforma-

tion and do not separate.

We now cite the asymptotic behavior of various field quantities

near the crack-tips. To this end let (r,8) be the local polar coordi-

nates (see Figure 2) defined by

x1- b-rcosO, x2. r sin 8, (Osr<oo, -S6'Sr) . (2.8)

Accordingly, the right-hand crack-tip corresponds to r- 0, while the

crack faces are located at e--w and e- w, respectively.

1.u and ~ are the components of the displacement and stress fields

in the linearized theory.
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For the Mode I loading, as r- 0:

K
I 1/2Cos2 (i- 2v+ sin2 ) +o(r 1/2)

(2.7)
K 1/2erI 2 1 /

2 =L- r sinI 2(l - v) -cos +o(r )

K 1/2  . e 36 -1/2)

a K r 11 2 cos (1- sin s -1/2

- r 1 /2  30 6 -1/2
12'f K I r

-I/ cos -i c o s -
- s i n  + o(r

- 2) , (10

22' 1 o-~ 2 sinyT) + o(r ) .

Here V is the shear modulus for infinitesimal deformations, v is

Poisson's ratio, while K is the Mode I stress-intensity factor, given

by

K- a(b/2) 1/2 (2.11)

For the Mode II loading, as r- 0:

KI 12iF, + 28 1 /21uI  - r sit 2(1 -v)+cos2 J +o(r I 2  ,
(2.12)

K1, 1/2 0F 2e1 1/2) I
-r K cos -(1- 20)+sin j +o(r / )

L .. ... .... .. . .. .. ....... . .. . ... .... ... . ..
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Ii -K1 1  
-I/2  2 ) 38

sn1(-2-cos cos- -) + o(r - 1 2

K 1 /2  0 1/2 (2.13)

o - 81/2
22 KI r - I 2 cos sinIcos- 7 - +o(r -  )

with

K i n(b/2) I / 2  (2.14)

The displacements appropriate to the special case of an incompressible

linearly-elastic body are obtained by setting v =1/2 in the formulas

cited above.

Although superposition no longer holds in the nonlinear theory, it

is still useful to consider separately the kinematic counterparts of the

Mode I and Mode II loadings. Corresponding to the symmetric loading

case we now require the deformation at infinity to be one of uniaxial

stretching, characterized by x: 0]
IF al - 0 x 1 1 A>O(2.15)

in which A and X-I are the principal stretch ratios at infinity. The

analogue of the antisymmetric loading case is a state of simple shear

governed by

Vcia 0[~ 1] ,(2.16)
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and k is the amount of shear at infinity.

Since the governing field equations in the finite theory do not

remain invariant if u1 (xl,x2 ), u2 (xlx 2 ) are replaced by -u1 (x1 ,-x2 ),

u2(xl,-X2), one is led to wonder whether or not the nonlinear Mode II

problem admits a solution that is antisymmetric about the plane of the

crack. We shall now show that, at least for the Mooney-Rivlin material,

a solution with this parity cannot possibly exist. To this end suppose
o0

!now that W is given by (1.19). Eliminating a between (1.12) and (1.8),

and invoking (1.2), (1.3), (1.4), (1.19), we find that

I on I (2.17)1

Equation (1.3), in view of (1.1), becomes

l+u l +u 2 ,2 +u u 2 ,2 -u u,2 u  12 ,  on H . (2.18)

Now assume u has the parity of a in (2.7). Then (2.18) implies

1- ul I - u 2,2 + ullU2,2 - u,2 = 1 on H . (2.19)

Therefore

u ll +u 2 ,2 =0 on T , (2.20)

u 1 1'U 2 ,2 - U,2U 2 ,1 =0 on R . (2.21)

'Here and in the sequel subscripts preceded by a comma indicate partial
differentiation with respect to the appropriate cartesian coordinate.
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Next, p-p#+ p" on 11, provided

,1

p - i[p(xlx 2 ) -P(xl,-x 2 )] ,

(2.22)

![P(xlx 2 )+P(Xl,-X 2 )] .

By virtue of the assumed parity of u, (2.17) and (1.1) give

1,ip on u on (2.23)

From (2.23), (2.20) it follows that p' is harmonic and u is biharmonic
a

on 1:

V2p- 0 , V4u -0 on II (2.24)

For the Mode II problem one draws from (2.16), (2.3), (1.1) that

Ul-kx2 + 0(1), u2 fi(1) as O
ff i+ - n . (2.25)

We shall now prove that (2.20), (2.21), (2.24), (2.25) imply

u1  kx2  u2 = c on II, c-constant (2.26)

so that the entire deformation field is one of homogeneous simple shear,

which contradicts the boundary condition (2.2) for traction-free faces

of the crack.

With a view to establishing this claim, we observe first that

u1 - kx2 and u2 are both biharmonic on H, and hence in the neighbor-

hood of infinity defined by 7- [xlp>b3, 2b being the crack length;



further both of these functions are bounded as p- o. As shown in the

Appendix, u then admits an expansion of the form

Go W oj} a) s n j ~ a co s (j -2)U CL( x l Vx 2 ) - k 6 al X2 + j [aj J ) c s b a s n c

+d(a)sin(J-2)y]p -j  on 7 , (2.27)

where cp is the polar angle defined by x1 = pcosy , x2
= psin y. The

series in (2.27) is absolutely and uniformly convergent on every closed

subset of 7 . Substitution from (2.27) into (2.20), (2.21), in view of

the parity of u , confirms that these equations cannot hold unless all

(2)
coefficients apart from a in the above series vanish. Continuation

of the biharmonic functions u from N onto H npw yields the desired

conclusion (2.26).

In view of the above result it is a plausible conjecture that the

Mode II global crack problem under consideration fails to admit an anti-

symmetric solution for every legitimate choice of the plane-strain elastic

potential J.
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r.

3. Asymptotic analysis of the elastostatic field near the tips of the

crack.

In this section we aim at the local structure near one of the

crack-tips of the solution to the global problem stated in Section 2.

For this purpose it is sufficient to consider the right-hand crack-tip,

situated at xI M b, x2 . 0. We suppose that the material has an elastic

potential of the power-law type (1.18). Further, if (r,e) are the local

polar coordinates introduced earlier (see Figure 2), we assume that the

deformation field of the solution admits an asymptotic representation of

the form

a(XlX2 ) -r a(0) as r- 0 (no sum on a) (3.1)1

Here m 1 and m2 are originally unknown constants obeying

O<m-minml,m2 3<l , (3.2)

whereas U are as yet undetermined functions that fail to vanish iden-

tically on [-w,r]. In addition we take for granted the validity of the

asymptotic equalities obtained by two successive formal differentiations

of (3.1). Note that (3.2) implies that the deformation is continuous at

the crack-tip, and that at least one of the deformation gradient components

F 0 becomes unbounded there. Observe also that according to (3.1), (3.2)

the deformation image of the crack-tip has for convenience been placed

'he asymptotic equality symbol "~" is used in its standard connotation.

Thus, f(r) -g(r) abbreviates f(r)- g(r)+ o(g(r)) as r- 0.
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at the origin of the cartesian coordinates, which can always be ar-

ranged by means of a suitable translation. Finally, we suppose that

the pressure field associated with the global solution satisfies

P(XlX 2 ) -rIP(e) as r-0 , (3.3)

I being another constant exponent, and assume that this asymptotic

identity may be formally differentiated at least once.

As pointed out in Section 2, the unknown global solution (3,a,pj

necessarily belongs to the class & introduced there, regardless of the

particular prescription (2.3) at infinity. It follows that the determina-

tion of i. and p in accordance with (3.1) and (3.3) for an arbitrary

member of J6 is bound to encompass the asymptotic behavior of the solu-

tion to the complete crack problem at hand.

We now show that for the present purpose (3.1) may - without loss

of generality - be replaced by

yL(xl~x2) rmUL(e) as r-0 . (3.4)

With this aim in mind we first note on the basis of the discussion in

Section 2 that whenever 1ya,pl is in j&, the same is true of

[y^*,a*,p*3 , where

y*-Qy^ a, p*p ,(3.5)

and is an arbitrary proper orthogonal tensor. The components of

every such tensor in the underlying coordinate frame admit the representa-

tion

i
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[os -sin(3 1
[a Lsin c Cos (3

for some cp in the interval [0,2w). From (3.6), (3.5), (3.1) one

finds

mml m 2 l) m2)

(3.7)

y mr Ul(8)siny+r U2 (8)cosy+o(rl +o(r 2 )

whence there are functions U* such that
a

1,x2) =f rue) + 0( M ) (3.8)

Further, since U is not permitted to vanish identically, it is always

possible to choose y so as to assure that U* fails to vanish identi-
a

cally. Now, dropping the asterisk in (3.8) we arrive at (3.4).

Note that the transformation (3.5) represents a rigid rotation of

the deformed body about the origin, determined by the rotation tensor 2;

further, the same rotation is applied to the nominal stress field a as-

sociated with the original deformation. Consequently the asymptotic analy-

sis to follow can determine the local behavior of the global solution at

most to within an unknown rigid rotation, which would ultimately depend

on the particular prescription at infinity. In this connection it should

be emphasized, however, that most of the desired local field quantities

are in fact invariant under such a rotation. For the special case of the

Mode I loading the local solution is bound to be symmetric about the

x1 -axis and this additional restriction supplies essential information
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relevant to the determination of the rotation tensor Q. As is clear

from the discussion at the end of Section 2, analogous parity restric-

tions are not available for the Mode II loading.

We now seek to determine the smallest exponent m in (0,1) and

the functions U appearing in (3.4) consistent with the governing field

equations and boundary conditions. This objective is most easily reached

by recourse to the polar coordinates (r,e). Writing y (r,8) in place

of Y(xl(r,6), x2 (r,e)) one finds that the incompressibility condition

(1.3) becomes

1 ~ /ay1 y2  Y2 ayl1
1 -l (3.9)

Further (1.3), (1.8), (1.12) lead to

P= 2W'(I)H +2*" (1) grr -gr8 a
3 rr

(3.10)

P- 2W'(I)H + 2W"(I) +2 ge - Iaw(I r) Dr r2 gee N6i1 re r

and (1.4) furnishes

I g(3.11)
r

with

Hr V , He = -V 2ya,

(3.12)

ay 0Ya aYa aya ay a

grr 3r 3r Ire ar aOe e 5e ae
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The boundary conditions (2.2) take the form

2W (I) -- + rp '-- . 0

(3.13)
aY2 ay,& M'1 a - rp =-0  on e=±-r

With the aid of (3.12) and (3.9), equations (3.13) are readily found to

be equivalent to

p 2W (I)/grr m2W' (1)g e/r 2 , gr6 = 0 for e=±- . (3.14)

We thus need to determine m and Ua  in (3.4) consistent with (3.9),

(3.10) and (3.14).

Equation (3.11), together with (3.4), gives

I r2(m-1)(*2() *2 (e 2 [U2fe)+ U2fe)]] (3.15)

where the dot denotes differentiation with respect to e. We shall hence-

forth take for granted that U1 and U2 do not have a common multiple

zero on [-w,w] so that the coefficient of r2( m-1) in (3.15) does not

vanish on

Next (3.4), (3.9) lead to

J-mr 2(m- 1)e[U1 2(e)-U 2 (e)U 1 (e)1+o(r 2(m-1))-l . (3.16)

Dividing this identity by r 2 (m - ) , proceeding to the limit as r-0,

and bearing in mind that m< 1, we obtain

UlU 2 - U2Ulm 0 on [-w,w] . (3.17)
12 2
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Thus,

U a U on [-ir,w] , a #0 , (3.18)

in which a1 and a2 are constants and U an unknown function.

Equations (3.18), (3.15), (3.12), (3.10), (1.18) eventually lead

to

S2Aa
2 nr 2 (m-l)n-lmu())Z( ,ar

(3.19)

nP -2 nr2(m-1) (8)Z( e

provided

G n-2 G(U+m2U)+(+m2U2  on [-,-I) 2 ].

On the other hand, the boundary conditions (3.14) yield

UU =0 at e -± 7r , (3.21)

p -2Ana 2nr 2(m-U)nGn- 2 at 8=± . (3.22)

We now show on the basis of (3.22), (3.21), (3.19) that

Z-0 on [-7,r], U(-Tr) U(7) =0 • (3.23)

For this purpose we integrate the first of (3.19) to obtain

2Aa2n r2(m-l)n mU(O)Z(6) (p-2Aa r 2(m-l)n (3.24)
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According to (3.21) either U(n) or U6() must vanish. By assumption

U has no multiple zeros on [-irT]l so that U(ir) and U6() cannot

vanish together. Suppose U() = 0, U(r) #0. Then (3.24) gives

p(r,r)= o(r 2 (m - )) as r-O , (3.25)

contradicting (3.22). Thus U(r) # 0, U(r) = 0 and similarly U(-r) 0 0,

U(-)= 0. On comparing (3.24) and (3.22) we infer that

Z(7) = Z(-r) = 0 (3.26)

Next, we differentiate (3.24) with respect to 8 and use the second

of (3.19) to confirm

UZ + [l+ 2(mlm)n]Zu = 0 on [-7r, r (3.27)

Equations (3.27) and (3.26) necessitate

Z=O on [-,ir] , (3.28)

which proves (3.23). Thus

G(U+m 2U) + (n-1) [6+2m(m-l)GUI =0, U(-t) U0 0  (3.29)

Equations (3.29) constitute a nonlinear eigenvalue problem that

arose also in connection with asymptotic analyses of other crack prob-

lems in finite elasticity [3], [4], [5] and was solved in [3]. The

unique eigenvalue in the range (0,I) is given by

m -1 - 1/2n, 1/2 < n<cc , (3.30)
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while the associated eigenfunction U is supplied by

2 2 11/2 i/[12K 2Cos 2(0/2)|1/ K/2

u(e)- sn(2) - (e) [(en)+Kcose] , (3.31)

where

W(e,n)= [I- K2sin 2 ,1 / (n-1)/n (3.32)

The representation of the local deformation field furnished by

(3.4), (3.18), (3.31) yields only the weak estimates

jor2(m-1)) r 1)
JO(r, p-o(r1 ) as r-O , (3.33)

and is therefore inadequate. Airthermore, the Jacobian determinant of

the dominant terms in (3.4) is found to vanish, which reflects the de-

generate character of the asymptotic approximation established so far.

With a view towards refining this approximation we now replace (3.4) by

I I

y (r,e) = a rmU(O)+r m V (6)+o(rm) m'>m (3.34)

with m' another unknown exponent and V (e) unknown functions that are
a

not permitted to vanish identically, while m and U are now given by

(3.30), (3.31). We suppose that (3.34) may be formally differentiated

at least twice. Again, by virtue of the discussion that led to the adop-

tion of (3.4) in place of (3.1), no generality is lost in assuming equal

exponents in the second term of (3.34).

From (3.34), (3.9) one now draws

'Li
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J r M+4M-2(mU; -,6T) o(rm+m'- 2 ) 1 (3.35)

where

=alV -a V on [-w,] (3.36)
1 2 2 1

Consequently

m+m'-2<0 , (3.37) A

and further ,1
mUY-m'' =o on [-7r,w1 if m<m'<2-m , (3.38)

mU; -m' 6'=l on [-7r,n] if m'-2-m (3.39) K

Next, combining (3.34), (3.10), (3.11), bearing in mind (1.18), and re-

calling that U satisfies (3.29), one confirms with the aid of arguments

similar to those used in deriving (3.28) that

Y=0 on [-7r, 7] if m<m'<2-m , (3.40)

Y- B(U+m 2U) on [-T,n] if m'-2-m , (3.41)

nA

where Y is an auxiliary function to be defined presently. In fact,

Y- G(+m' 2 x) + 2K(U +m2U) + (n- 1)

+2(n-1)[m'(m-1)xG+m(m'+m-2)UK+UKI , (3.42)

in which

X na1VI+a 2V2, K-XU+mm'XU on (-w,f] . (3.43)
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Finally, the boundary conditions (3.14) lead to

j(±r)=O if me<m'" 2-m (3.44)

i(±w) -0 if m<m'<2-m (3.45)

i()fi l/mU(r), '(-w) ''l/mU(-ir) if m'=2-m . (3.46)

In view of (3.42), equation (3.40) together with (3.44) constitute

an eigenvalue problem for X with m' as eigenvalue parameter. On the

other hand, (3.41) is an inhomogeneous differential equation for X, to

be solved subject to the boundary conditions (3.44). Consider next the

characterization of T through the differential equations (3.38), (3.39)

together with (3.45), (3.46). Since these boundary conditions are readily

seen to be implied by (3.38), (3.39), additional information is needed

to determine the appropriate solutions. Such information is supplied by

the assumption that the solution T to (3.38) or (3.39) possesses con-

tinuous derivatives of all orders on [-ii]. Equation (3.38) now poses

an unconventional eigenvalue problem: one is to determine the values of

m on the interval (m,2-m) for which the solution to (3.38) is infi-

nitely many times continuously differentiable on [-ii].

We turn at present to the determination of the relevant eigenvalues

of (3.40), (3.44) or (3.38). If at least one of the foregoing problems

has eigenvalues in the appropriate range, we choose for m' the smallest

such eigenvalue. The following three possibilities now arise. In case

I so determined is an eigenvalue for (3.40), (3.44) but not for (3.38),

X must be the eigenfunction associated with m', while '-0 on [-i,1].

11A A
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Next, if m' is an eigenvalue for (3.38) but not for (3.40), (3.44),

T has to be the eigenfunction associated with m', while X - 0 on

[-ii]. Further, if m' is an eigenvalue common to both problems,

T and X are the eigenfunctions associated with this value of m'.

Finally, suppose neither of the eigenvalue problems considered

above has an eigenvalue in (m,2-m). Then evidently m'= 2-m and the

inhomogeneous equations (3.39) and (3.41), (3.44) are to be solved for

X and T, which in turn determine V1 and V2.

At this stage we investigate the solutions to (3.38) and (3.39).

Consider first (3.38). In view of (3.31), we find

Ia m I /m

If on (0,], 7r a4 (-U)
m  on [-w,O) , (3.47)

in which a3 and a4 are constants. If V is to possess unlimited

smoothness on [-r,], m'/m must be a positive integer. Thus the

smallest eigenvalue m'>m is given by

im 2m 2 - 1/n , (3.48)

and the associated eigenfunction by

2
- b 0U , (3.49)

where b0 0 is a constant. In addition m' defined by (3.48) conforms

to (3.37), provided

n<3/2 (3.50)

In the event that nk 3/2, (3.38) does not possess an eigenvalue in
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(m,2-m). With a view to the determination of IF when n> 3/2 we con-

sider (3.39) merely on the interval [0,w], which will presently be seen

to be sufficient. Evidently

- T' + T" on [-w,w] , (3.51)

if one sets

T' (6) -'[T(B) -1(-e) 1, I" (e) -1[T(e) + (-O) -i et n 7 (3.52)

Moreover, ' and T" are found to satisfy

mUi' -m'U' -0 on [Oi] , (3.53)

mUT' -mUT -1 on [0,] . (3.54)

If na3/2, the only solution to (3.53) having an infinitely smooth odd

extension to [-v,ff] is

T' 0 on [O,w] . (3.55)

Further, (3.54) gives

T" (6) - ,/ bl- f1 7r =Q2-m, (Oew,(3.56)
e [U(Y) ]

with b an arbitrary constant. We now change the variable of integra-

tion in (3.56) from cp to & by means of the one-to-one mapping

1 -A-[1+KSn2 2Q -w(cpn)cos Q] 1/2 (0 S ) (3.57)
cos w(cp,n) + Kcosq
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w and K being given by (3.32). This change of variable carries

(3.56) into

T e F -2m3  f Cos El 2/m'  dE (3.58) i !

0

where

Cos 1 l+ Ksin2e -w(en)cos 6] 1/2  (s ) . (3.59)
o 0 n2 w(en) + Icos e

The integral in (3.58) may be evaluated in terms of hypergeometric functions,

provided n >3/2. Following an analysis, the details of which will be omit-

ted here, one is led to the representation

'V b 2
Um /M+ H on [0,f], m' 2-m (3.60)

Here

3-1/tm
b -zb _____n r(1/2-l1/m) (.1

2 1 2m 2  r(l-l1/m) '(.1

r denoting the Gamma function, while

5/2
H(O) = 2 [w(e,n) + Kcos 0]

m

X[-i F(1/2 - 1/m,1/2; 3/2 - l1m;cos 2 g Isin &0 ] . (3.62)

m 0
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in which F stands for the hypergeometric function. Now if T is

to possess continuous derivatives of all orders on [O,rl then b
22

must vanish. From (3.51), (3.55), (3.60) one infers

T(O) -H(6) (-Ir 6 ) . (3.63)

One draws from (3.62), (3.63) and familiar properties of the hypergeo-

metric function that

T(0) -- 2n1/2(2m)-m/m , i

(3.64)
v(±w n m r(3/2 -l/m)

MM' r(l- 1/m)

the first of which is also a direct consequence of the differential

equation (3.39). The second of (3.64) will be used later in discussing

the shape of the deformed crack.

In case n- 3/2, (3.39) fails to admit a solution of the requisite

smoothness. We postpone consideration of this special case, which requires

separate attention, until Section 4 and turn to the determination of X.

Consider first (3.40) and set

X X on [-ri] , (3.65)

where

,X (0)= [11×(e) -X(-8)]1, X" (e) - [X(e) +X(-e) ]  6 (- s (3.66)

1See for example [15], p.556.

2 Note that H(e) is an even function of e with continuous derivatives
of all orders on [-n,w] and recall that U(8) has a simple zero at
e-0.
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From (3.65), (3.66), (3.40), (3.42) we have, bearing in mind the parity

of U,

G(R+m'2 x') + 2K' (U+m 2U) + (n- 1)'G+ 2(n- 1)[m' (m- 1)x'G

+m(m'+m- 2)UK' + T*' 10 on [0,i] , (3.67)

G((+ m'2X" ) + 2K" U+ m 2U) + (n - 1) X"+ 2 (n- 1) [ m (m - 1) X"G

+m(m'+m- 2) uK" + K" ] K 0 on [0,w] , (3.68)

where

K1- x' U + mm' X' U, K" ffi+ mm' x"U (3.69)

Next, (3.66), (3.44) furnish

(70 - 0 , '(0) 0 (3.70)

()- 0 (0)- 0 (3.71)

The differential equation (3.67) and the boundary conditions (3.70)

are also encountered in [4]. As indicated there, the transformations

Cos- [I+Ksin 20e- w(e,n)cos 011 /2  ( 0(.2

n/TL ,(O,n) + Kcos o

2

cos - [Wo,) +KcOs 8]
- M x)'(e) (0O . ) (3.73)

reduce (3.67), (3.70) to

ii(+ A,2Wl( 0= (Os-,Cr r/2). I (0) - I(w/2)-0 , (3.74)
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where r.

2,
A 4nm (nm'- n+l)/(2n - 1) (3.75)

The transformed eigenvalue problem (3.74) has the solutions

WlIM)-cICos X ,=j (j-1,3,5,...) (3.76)

in which cI  is a constant. Under the transformation

W2 () = [(6,n)+Kcos 8 - m x"(0) (0<r. ) (3.77)

together with (3.72), equations (3.68), (3.71) become

i4 2(Q)+ x2W 2(Q)-0 (Os~r.-r/2), *2 (0) = *2 (7/2) - 0 (3.78)

and the solution to (3.78) is given by

W2 ()Mc 2 cosX, X=j (jff2,4,6,...) . (3.79)

Thus the elgenvalues of the original problem (3.40), (3.44) are

the solutions for ml of

4nm'(nm'-n+l)/(2n-1) -j2 (j- 1,2,3,...) . (3.80)

For j an odd positive integer, X" = 0 on [-7r,7r] and x'(0) is fur-

nished by (3.76), (3.73), (3.72), while if j is even, X'(0) -0 on

[-Irrl] and x"(0) is furnished by (3.79), (3.77), (3.72).

On discarding negative roots m' of (3.80) one arrives at

2 m + j2 (j 1,2,3,...) (3.81)
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Further,

m =l-i/2n m if j-l , (3.82)

so that J 2 since m'>m. The minimum admissible eigenvalue m'

occurs at j - 2 and is given by

m 1 2+8m/n], K (n -1)/n ;(3.83)

the corresponding eigenfunction is readily shown to be

()c[w(en)+Kcse] m  f Ksin e- w(en)cose 11 ( e ) (.4

" '(n)+K2S 2n 2  1i ( 8 ) (3.84)
X ~ ,K os(w (e,n) + KCOSe I

The eigenvalue (3.83) conforms to (3.37) as long as

n< 7/2 .(3.85)

Finally suppose that n 7/2, in which case (3.40), (3.44) do not

possess an eigenvalue on (m,2-m). Equations (3.41), (3.44), (3.65),

(3.66) in conjunction with the transformations (3.72), (3.73), (3.77)

lead to

Qle) + x 2Wl ) . K,/n3 cos ,"l(0) -f W (,r/2) - 0,

Im 3A 1I

(3.86)

W2 ( ) + )2W2 (E) =O, *2 (0) = 2 (7r/2) - 0J

where

2
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Thus,

W() -BKny cosC if n.7/2 , (3.88)
2

4Am (1+n)

W2 c2 cos 2 E if n 7/2 (c2 constant) ,

(3.89)

W2 0 if n>7/2

Equations (3.88), (3.89), together with (3.77), (3.73), (3.72), in turn

furnish

X(B) B 2r [w(e,n) + Kcos6] - 1+Ksn2 e-w (,n)cose
4Am (l+n)

+c2[w(e,n)+ccosel m'1+Ksin 2-W(en)cose-l} (-Ter)[w(e,n)+Kcosel 2n2

mn'2-r , (3.90)

for n>7/2, with c2.0  when n>7/2.

At this point we summarize the various possibilities that arise

in the determination of the second term in (3.34). First, if nZ 7/2,

there are no eigenvalues of (3.38) or (3.40), (3.44) on the interval

(m,2-m). Thus m'-2-m in this instance and X, T are given by

(3.90), (3.63). On solving (3.36) and the first of (3.43) for Va one

is led to

V, = (alx-a 27)/a , V2. (a 1+a 2x)/a on [-?r,n] (3.91)
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Next, suppose 3/2<n< 7/2. In this case only the x-problem admits

an eigenvalue on (m,2-m), which is given by (3.83), whereas X is sup-

plied by (3.84). V is now found by setting IFi 0 in (3.91), which
a

gives

V1 alx/a 2, V2ffa2x/a
2  on [-,or] (3.92)

!,

Finally, for the range 1/2<n< 3/2 , in which case both the x-problem

and the T-problem admit eigenvalues on the appropriate range, we seek

the smallest such eigenvalue. This criterion, along with (3.48), (3.83),

leads to

Fi

m -jC + K + 8m/nj if 1<n<3/2

m =1 if n-1 , (3.93)

m- 2-1/n if 1/2<n<i

Further,

T-0 on f-r,n] for 1<n<3/2, X- 0  on [-7r,T] for 1/2<n<l (3.94)

For 1/2<n<l, V is supplied by

Vim - a2 /a
2, V2 f=ali/a 2  on [-n,7] , (3.95)

where T is given by (3.49). When n-i , both problems have the common

eigenvalue m'- l. In the following section we shall explore in greater

detail the Mooney-Rivlin material, which is a power-law material with

nl.
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It is convenient, for reasons that will be made clear presently,

to apply an additional rigid rotation to the deformation field charac-

terized by (3.34). In particular, consider the rotation tensor whose

component matrix in the underlying frame is given by

S 2/a -a /a

[Qa = +a 2  (3.96)
a] a 1/a a 2/a 2

Calculating y* in the first of (3.5) from (3.34), (3.96), bearing in

mind (3.36), (3.43) and dropping the asterisk from the resulting estimates

for the components y* , one arrives at

a

=,re r T(6) + o(r m )

(3.97)

Y2 (r,) - ar mU() + rm' x (e)+o(rm)

The significance of (3.97) is as follows. Suppose, in particular, that

n>7/2 and consider the deformation-image of the extended crack axis

0-0. From (3.97), (3.90), (3.64), (3.31) follows

2nl/2 (2m) m' m
yl(r,O) m r +o(rm) , Y2 (r,0) = o(r ) , (3.98)

m a

and thus the ray 6= 0 after deformation is tangent to the xl-axis at

the origin.

In case l<n<7/2 (n#3/2), Y=0 on [-,irl and the first of
m

(3.97) yields merely the weak estimate yl=o(r ). There is, however,

no difficulty in establishing a non-degenerate estimate for y,. Indeed,
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let

II II

Yl (r,) =a rm X(6)+o(rm ), m">m , (3.99)

*and suppose that Y2  is given by the second of (3.97). Entering (3.9)

with this Ansatz, one has

mXU-m XU=0 if m<m"<2-m

* * 4 (3.100)
mXU-m XU=l if m"= 2-m

These equations are simply (3.38), (3.39) with m', T replaced by m" ,

X, and hence

m 2-1  , XbU2  on [-r,w] for 1<n<3/2n 0

(3.101)

m" 1+ , X=H on [-7r,7r] for n>3/2

Thus for 1/2<n<3/2,

Yl(r,e)= b r2m [u(M] 2 + ,~ 2m!

(3.102)

I /
I

y2 (re ) armU(0) +irm' x(6) +o(r m )

while for 3/2<n< 7/2,

1lr 6 r 2-mH(O) + o(r 2-m)

(3.103)

Y2 (r,6) - armU() + -rm ' x(a) + o(rm)}

m', X and H being given by (3.83), (3.84), (3.62). In case na7/2,
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y (r,)=ir2 - mH(e)+o(r2 -m)

(3.104)

1 2-rn 2-rn
Y2 (r,e) =armU(e)+ 2-mr x(e)+o(r2 )

with X now furnished by (3.90). U and m are supplied in all cases

by (3.3C), (3.31). As mentioned earlier, the special case n= 3/2 will

be'dealt with in the next section.

We now turn to the determination of the local structure of the pres-

sure field, which has been assumed to admit the representation (3.3). From

(3.9), (3.10), (3.12) follows

2W'(1)V y1+2W ( 1 r 3r 1 2 Do a r r = re e ar . (3.105)

Suppose first 1/2<n< 3/2, in which case ya is given by (3.102). Sub-

stituting from (3.102) and (3.3) into (3.105), one is led to

4nAb0 a
2n2Gn rl+ o(r-) arm-2 (ZP - U)+(m+t -2 ) , (3.106)

where G is given by (3.20). By virtue of the boundary conditions

(3.14), along with (3.102),

2(n-2) (2-n)/np(r,±n) -2nA[maU(w)] r (3.107)

whereas from (3.3),

p(r,±n) -r£P(±w) . (3.108)

Since b0 0 one has
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S1 -m= i/2n . (3.109)

From (3.107), (3.108), (3.109) one now draws

P (±70 -0 .(3.110)

Suppose 1< 1/2n. Then (3.106) gives

ZPU-mPU= 0 on [-ir,n] , (3.111)

which together with (3.110) yields

P=0 on [-7, ] (3.112)

Therefore

k 1i/2n (3.113)

2n-3 nzP U-P 4nAb a G on [-r,w], P(±r) f0 (3.114)
0

The solution to (3.114) is found to be given by

P(e) - 4b0Aa n m [(e,n) + Kcos ei/2n n - cos , (3.115)

with cos& 0  and w(8,n) given by (3.59), (3.32).

When n>3/2, substitution from (3.103) or (3.104) into (3.105)

eventually yields

Z2 -1 (3.116)
n

mPU- PU- 2nAa 2n-4G n-2S on [-nn] , (3.117)
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where

S- G[H+ (2-m)2 H] + (n- 1)[GH+ 2(2-m)(m- 1)GH] (3.118)

The boundary conditions (3.107), (3.108) give

P(±w)= 2nA[amU()] 2 n- 4  (3.119)

The boundary-value problem consisting of (3.117), (3.119) fails to admit

a solution with continuous derivatives of all orders at e= o, and con-

sequently the Ansatz (3.3) cannot possibly be consistent with the field

equations when n> 3/2.

In summary, the behavior of the pressure near the crack-tip is

governed by

p(r,8) r 1/2np(e) + o(rl/2n) for 1/2<n< 3/2 ,

~1+1n) r(3.120)
p(r,8)- o(r

- + /n )  for n>3/2 ,

with P furnished by (3.15); the weak estimate for p appropriate to

n>3/2 follows from (3.10) together with (3.103) or (3.104). A non-

degenerate pressure estimate valid for n >3/2 would presumably neces-

sitate a higher-order asymptotic analysis of the deformation field.

We note that if n>3/2 the dominant terms in (3.103), (3.104)

have a Jacobian determinant J-1 and hence constitute a locally one-to-

one mapping. In contrast, J computed from the dominant terms in (3.102),

which apply to 1/2<n<3/2, is merely o(r1-3/2n). The discussion in

the next section of the Mooney-Rivlin material (n- 1) and of the special
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case n- 3/2 will, however, lead to an improved approximation to the

deformation at least when 1lrn< 3/2.
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4. The transition case n- 3/2. Higher-order analysis for the Mooney-

Rivlin material.

We first investigate the modifications necessary in the asymptotic

structure of the deformation and pressure fields when n- 3/2. The fol-

lowing analysis parallels that in [4] for the derivation of the logarithmic

term in the deformation field when the hardening parameter there takes the

value 7/6.

Recall from the first of (3.103) that

Yl(re ) -r 2 - mH(On)+ o(r2-m), (n>3/2) , (4.1)1
1 a

and note on the basis of (3.62) that

co [U(6,3/2)] 3 27'3
H(e,n) = 0 / +0(1) as , . (4.2)

n -3/2 02 c 16F2

Thus yl(r,@)-ic as n- 3/2 from above for all e#0 and every suf-

ficiently small r >0. Consequently the preceding estimate for yI is

inadequate near n- 3/2 .

We shall now show that in a deleted neighborhood of n- 3/2,

yl(r,6)--Irl+/2nH(On)+ bU 2(8,n)r2-1/n + o(r *) , (4.3)

with m*max(l+i/2n, 2- i/n) and b 0 0 a constant. Suppose first that

n>3/2 and replace (4.1) by

"We now write U(e,n), H(e,n) in place of U(e), H(O) in order to em-
phasize the dependence of these functions upon the hardening parameter.
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S 2T(e,n)+o(r '), m" >2-m . (4.4)
a

Substitution from (4.4) and the second of (3.103) into (3.9) leads to

mUT-m" TU=0 on [-w,n] , (4.5)

which is merely (3.38) with m', T replaced by m", T. Thus

m"=2m=2-l/n, Tb 0 (4.6)

In case l<n<3/2, a similar procedure yields

y(r,) br 2mU2 (,n)1 r2-m(,n) +o(r2-m) (4.7)

which confirms (4.3). It should be noted that the first term of (4.3)

dominates as r-*O for n>3/2, while for n< 3/2  the second term dom-

inates; in either case the respective dominant term agrees with our pre-

vious results. The two terms trade the dominant role as n passes

through 3/2, the respective powers of r having the common exponent

4/3 at n- 3/2.

From (4.2), (4.3) now follows

i c0rl+l/2n 1 ]2 1+1/2n

Y (r , )  a -n- 32- +bor 1/nj (8,3/2)] 2 +rl n1 (e)

+b 0 (n-3/2)r 2-1/n12 ()+o(r
m *) as n- 3/2 . (4.8)

where n1(8) and n2(e) are functions that stay bounded as n- 3/2.

Thus if y1 (r,e) is to remain bounded as n- 3/2 one must have
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1 c 0
0 a n-3/2+0(1)l as n-3/2 . (4.9)

Proceeding to the limit in (4.8) as n- 3/2 one arrives at

3c 0 2r4/31o/g4/Y1(r,E)) =- [U(6,3/2)] r logr+r 4 3 n(e) +o(r4 13) (4.10)

2an

in which n(e) is bounded. This result motivates the following modifi-

cation of (4.3) in case n= 3/2 . We suppose

yl(r,e) - r4log r v1 (e) + r
4 3 v2 (e) + o(r

4 3) , (4.11)

and, recalling (3.102), (3.103), assume

Y2 (r,) ar 2/3U(,3/2)+ O(r 
2/ 3+ 6) (4.12)1

where 6>0. Substitution from (4.11), (4.12) into (3.9) yields

U 2v l,U - 26v !V-U! on [-ir,,rI (4.13)
1 2fviO U 2 2 2  a1 -

The first of (4.13) gives

v1 - c1U 2  on [-Wn] , (4.14)

so that the second of (4.13) may now be written as

U- 20v 2- c1O -) on (-nwl .(4.15)
U2  22 a l u[ .

Imerely requiring the error to be o(r2 /3) is inadequate for the present
purpose.
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If (4.15) is to possess a solution v2 of unrestricted smoothness on

2
[-r,wl], then c1 . 3c0 /2an in agreement with (4.10).

Next, observe that in view of (4.9), (3.115), P becomes unbounded

as n- 3/2 for -n< e< w. The foregoing analysis suggests that we re-

place (3.3) by

p(r,) -r1 /3logrP(O) for n-3/2 (4.16)

Substitution from (4.11), (4.12), (4.16) into (3.105) gives

IPU- ZPU 6Ac 0 G3/2 on [-w,r] (4.17)

Moreover, from the boundary conditions (3.14),

P(±w) = 0 (4.18)

Consequently,

1 6]1/3 / co2rofrn3/ 9

P(e) - 4coA[w(e,3/2) +-Icos Cos for n/- 2 (4.19)

in which cos2&0 is given by (3.59) with n- 3/2.

Equations (4.16), (4.19) supply a non-degenerate estimate for the

pressure in case n- 3/2. In addition, (4.3) together with the second of

(3.102) yield a locally one-to-one approximation of the deformation if

1 < n< 3/2.

We turn now to the Mooney-Rivlin material (n- 1), which has the

complete elastic potential (1.19), and seek improved estimates for the

corresponding deformation and pressure fields.

The equilibrium equations (3.10) in this instance reduce to
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2k H p =Re (4.20)

with Hr and He supplied by (3.12). The boundary conditions (3.14),

in turn, at present become

I I gee
1' t 1 -_ g - 0  at 0=+n (4.21)

1 grr r

Setting n=1 in (3.30), (3.31) one finds that

m = 1/2, U(O) =sin(8/2) (4.22)

We recall also that the eigenvalue problems determining X, T- and hence

V in (3.34) - admit the common eigenvalue m'- 1. Upon substituting

n- I in the corresponding solutions (3.49), (3.84) one arrives at

2e
X=b 1 cos o , 'Yb 2sin - , (4.23)

where b and b2  are constants. Finally, (3.113), (3.115) supply a

first estimate for the pressure:

2ub2 0

-1/2, P(e)= - -=cos- (4.24)

Equations (3.3), (3.34), (3.91) together with (4.22), (4.23), (4.24)

now give
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1/2 2 20 i~
Yl(r,8) -alr sin -t+--2 (alb cos 6 -a 2 b 2sin 2 r + o(r)

a 2 1 1 2)

1/2. 1 29
Y2 (r,) -a 2 r sin +- (a b2sin +a 2b cos 6]r+o(r) (4.25)

a

2ub 2 1/2 e 1/2p(r,O) - 2 -- r cos -i o (r 1 )

a

With a view to refining these estimates we first replace (3.34) by

I I

ya (r,e)-a r1/2U(e)+rV (0)+rm*R (e)+rm*S (8)+o(rm*) . (4.26)aa a a at

where m,' >m>l and R , S are as yet undetermined, whereas the func-
aa

tions U, V are already known. Combining (4.26) with (3.9), (4.20) anda

invoking the boundary conditions (4.21) one finds afier considerable com-

putations that

m*= 3/2, m' =2 , (4.27)

R1 -4[ax 1 - a2 T], R2 -[a 2 x + a Tl on [-wn] , (4.28)
a a

SI M-[al - T 2 $= [a + al2 on [-r,,] , (4.29)

with T1, X1 9 '2 ' X2 supplied by

3 2b 1 b 2  2 e 4 3
l(e) - c sin3+---2 sin - 4sin cos - Icoa

(4.30)

X1(e)- c sin - 2 sin!2a
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dlsin-4 e (b2 --- +6b2 c sin 2
v2(e) - -2 ( 2  2 2 21

a a a

2
b2b2 8b, 2b

12 1 3 e 1 3 6 6
+ 2--- -cos-sn -2 c s 2 '

a a a (4.31)

X2 (e) -[2sin6 -sin 26] +d2 cos 26
a

+2b +3c 2 ] b 2 [7 b 1 2 +9

~16 2]

Here cl, c2, d1, d2  are constants.

In order to calculate an additional term for the pressure field,

we apply the rotation with the component matrix (3.99) to the deformation

field (4.26).1 This yields

13/2 12o 2

Ylr(r,Y)(e) ---r _()r (6)+o(r.)

}(4.32)

2a a 1 a X2(6+~)
y2(r

'0) " arl/u(e) +-rx(e) +-r3/Xl(e)+-rx() +  ( 2

Next, for the Mooney-Rivlin material, (3.105) reduces to

U 2 y M 1 ( _ '2 2I~ lr\r 6 36 3r/(4.33)

We now suppose that the pressure field conforms to

iRecall that the pressure field is not affected by such a rotation.
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p(r,O) r P(e)+r P (8)+o(r ), X'>1 , (4.34)

with L, P supplied by (4.24) and L', P1  unknown. Equations (4.32),

(4.33), (4.34) and the boundary conditions lead to

£'= ' P (8) 211 28 6 3c2 + 5blb 2),a
--, Pl() -2sin [4---+---2 2)sino . (4.35)

aa

Finally, suppose that the Mode I loading (2.15) prevails at infinity,

in which case the local deformation field (4.26) is to be symmetric about

the x -axis. In this case,

aI = 0, a2 'a, bI =0, c2  0, d2 = 0  , (4.36)

and (4.26) reduces to

y(e) 1 2 ~+ 6F32 2e e4 os
Yl ( r ' e )  a rb2sin a 2 [4sin cos+-cos 2]

2b2 b2
12 4022 261 2)a r[d 1sin 1 2+.(3c±- T2sin 2]+o

a 2a

(4.37)

1/2 . 1 3/2l 3n 22
Y2 (r,) - ar sin i+ r [ 2i sn2

2 2

+--r 2[2sin 6-sin20]+o(r 2

a

Further, the associated pressure field conforms to
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21jb2 2r

p(r,6) - --- cos + r (3-cos8) +o(r) (4.38)
a a

The above results for the symmetric loading mode are identical with those

arrived at in an unpublished study by Knowles and Sternberg, which is sum-

marized in 19]. In contrast, it is not possible to specialize the con-

stants in (4.26) so that the displacement field u = y -x has the parity

of O in (2.7).

This fact is consistent with the conclusion reached at the end of

Section 2, according to which the Mode II problem for the Mooney-Rivlin

material fails to admit an antisymmetric global solution.

t

I_
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5. Discussion of the deformation and stresses near the crack-tip.

Our initial objective here is to explore the asymptotic results

for the deformation field established in the preceeding two sections. Of

particular concern is the deformation image of the crack faces 6 =±r

Suppose first that n>3/2 and consider (3.103). Then, to leading order,

1 +/2nHl6/In)
Y l ( r , 0 )  = - a l + ir:

(5.1)1

Y2 (r,e) = ar1 l-/2nU(e) + o(rl
-l/2n)

In view of (3.31), (3.64), one has in particular

1 l+1/2n /n r(3/2- l/m)
Y 2mm l/2n r(2-1/m)

+o(rl ), m l-i (
2n (5.2)

Y2 (r,r) = arl1-1/2n n-K/2 + o(r 1-1/2n)

1-1/2n -K/2+ 1~-1/2n)
Y2 (r,-70 - -ar n + rJ

Thus, to dominant order, the two crack faces are carried into the

curve represented by

IThe shape of the deformation image of the crack faces is of course in-
variant under a rotation such as (3.96).
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2n- 1

n±K ( n ) a 2 n  1 Yl< 0 , K(n) 0 (5.3)1

From (5.1) it follows that points near the crack-tip in the undeformed

body lie to the right of this curve after deformation. We note on the

2basis of (5.3) and (3.34) that the crack is bound to open when n>3/2,

regardless of the magnitude and nature of the particular loading at in-

finity. This conclusion, which is readily shown to hold also for

l<nC3/2, is in marked contrast to the predictions of the linearized

theory for a Mode II loading.

It should be emphasized, however, that the foregoing result is con-

tingent upon the applicability of the Ansatz (3.4), in which the functions

U are not permitted to vanish identically. For example, in the presencea

of a loading of uniform uniaxial tension parallel to the crack faces, the

ensuing deformation field is homogeneous and the crack fails to open. In

this instance the deformation field is non-singular at the crack-tips, so

that (3.4) cannot possibly apply. We shall remark on the question of the

scale of the crack opening later in this section.

Note that the local deformation field (3.34) may be regarded as the

result of two successive mappings: a deformation of the undeformed body,

in which the crack opens, at least when n>l, followed by a rigid rota-

tion, with Qa$ given by (3.96). In view of the principle of objectivity

we shall therefore be entitled to base the computation of the local stress

1The specific form of K(n), which is expressible in terms of the Gamma
function, is of no particular interest here.

2Recall from (3.18), (3.20) that the amplitude parameter "a" cannot vanish
in this instance.
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distribution on (3.102), (3.103), (3.104).

1
We cite next the symmetric deformation fields appropriate to a

Mode I loading at infinity. Since U in (3.34) is an odd function, one

has a,= 0, a = a. This specialization leads to the following results.
'2

For 1/2<n< 3/2,

2 2-/n 2-1/n)Yl(r,)= bo0[U(6)]2r2-/n+ o~

(5.4)

Y2 (r,e) aU()r 1-/2n+ o(r 
2- 1 /n)

while for n >3/2,

iri/2nH(6) + 1r+1/2n)

yl(r,0) a -o

(5.5)

l-i/2nu(o) X(O)rl+l/2n+ o(rl+1/2nJ
Y2(r,6)=ar +

in which X is furnished by (3.90) with c2 = 0. Finally, for n= 3/2,

Yl(r,e) =b0U
2 (e,3/2)r4 /3log r +O(r 4 / 3) '.1

(5.6)

Y2 (r,e) ar 2/3U(e,3/2)+ 
o(r 2 ) .2J

It is not possible, however, to specialize the asymptotic results

for the deformation so as to arrive at an antisymmetric local displace-

ment field, at least when n >1. To see this, recall that un= Y.- x ,

and observe that for n>1i one has m'>1, whence (3.34) give

IObserve that the associated displacement field u a' ya- xa is also

bound to be symmetric by virtue of the parity of x .
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ul(r,6) -sa1rl1-/
2nU(8) - r cos e + o(r) ,

u2 (r,8) =a 2 r-i 2  ( )-rsinE+o(r) . (

The constants in (5.7) evidently cannot be chosen to yield a displace-

ment field of the desired parity.

As we observed in the previous section, the local asymptotic solu-

tion obtained for the Mooney-Rivlin material (n- 1) also fails to admit

an antisymmetric displacement field. The foregoing conclusions concern-

ing n. 1 lend support to the conjecture that there does not exist an

antisymmetric global solution for all values of the hardening parameter.

At this stage we calculate the associated local true-stress field,

as well as the strain-energy density. On account of (1.7), (1.12) one has

Ta =2'(I)F aF -p6 0 (5.8)

Suppose first that 1/2<n<3/2. In this case, (3.102) and the first of

(3.120),together with (5.8), yield

1-1/n1-/
T (r,E)) -f rl-i/nT11 (8,n)+ o(rl -1/n)

T1(r,e) r-/ 2 nTl(e,n)+ o(r-I 2 n) (59)12 12

T2 2(r,e) r- T22 (8,n)+ 
o(r- )

If n>3/2, the appropriate stresses obey

IObserve that the true stresses here are referred to the material polar
coordinates (r,O).
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T T(r,e)- o(r-1+1/n)

T 12 (r,e) =r-l+l/n l2(o,n) + o(r- l+l /n )  (5.10)

-1 -1T2 2(r,e) T22 ( ,n)+ o(r
- )

The auxiliary functions T appearing in (5.9), (5.10) are defined by

2 2n-2 2n 2-n 1-1/n 2
Tll(e,n)=8Ab0 a m n [(,n)+Kcose] Cos

2n-1 2n 3/2-n -1/2nT12 (e,n)= 4Ab a m n [w(,n) + Kccose] Cos CO (5.11)

2n 2n 1-n -1
T22 (e,n)= 2Aa m n [w(e,n) + Kcos 1-  ,

with cosE 0  given by (3.59), while TI2 involves the hypergeometric

function and will not be cited explicitly.

In the transition case n- 3/2, equations (4.11), (4.12), (4.16)

may be used to deduce the corresponding stress field. We note that in

this instance T22 is given by the last of (5.9) or (5.10) with n- 3/2

and thus the representation

T2 2(r,e)= r- T22 (e,n)+ o(r
- ) , (5.12)

is valid for i/2<n<c.

The components of stress in (5.9), (5.10) are those associated

with the rotated deformation fields (3.102), (3.103). If T are the

true-stress components associated with the original field (3.34), one has
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T*0 Q Q T (5.13)

in which Q are the components (3.96) of the rotation tensor Q.

Observe that a more satisfactory estimate for T than that in

the first of (5.10) is precluded by the weak estimate for the pressure

in (3.120). It is interesting to recall in this connection that the

asymptotic solution in [3], [4] of the Mode I crack problem for a class

of compressible elastic solids also fails to yield a non-degenerate

estimate for the stress TIl at sufficiently large values of the cor-

responding hardening parameter. The most singular of the stress com-

ponents in (5.9), (5.10) is T2 2, which becomes infinite at the crack-tip

-1
like r . According to (5.11), T2> O, and hence 2 is tensile for

22 22

all small enough values of r.

We now determine the dominant character of the true stresses when

the latter are referred to the spatial coordinates ya. Since such a

representation of the stresses depends on the availability of an in-

vertible estimate for the local deformationwe confine our attention at

present to n l. One draws from (3.34) that

r, r (2n-l)/2n if r 2.y2+y 2  " (5.14)

Equations (5.9), (5.14) imply that for i-n<3/2,

TIIn-O T , I1),T2- (5.15)

For n>3/2, (5.10) yield

O i .
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~Or 2n-1
o , ' ) T22  (r* ) (5.16)

We observe that the singularity of T in (5.15), (5.16) becomes pro-

gressively more severe with increasing values of the hardening parameter

and - for the range of n under consideration - is always stzonger than

that predicted by the linear theory.

From (1.18), (3.34) we gather that

2nn -1 -1W(I)-Aa G (e)r- +o(r-), r-0, n>1/2 , (5.17)

so that the strain-energy density has a singularity near the crack-tips

which is of the same order as its counterpart in the linear theory.

Finally we supply an estimate for the amplitude parameter "a",

valid for small loads at infinity. In this connection we recall a conser-

vation law appropriate to the equilibrium theory of finite plane strain:

for every curve C that is the boundary of a finite regular subregion

of 1,

T
(Wn- F s )d= 0 (5.18)1

C

provided W and F are the strain-energy density and the deformation

gradient tensor, whereas n is the unit outward normal of C and s

is the Piola traction,

(5.18) is an adaptation to plane strain of a conservation law originally
due to Eshelby [16]. The importance of this conservation law in fracture
mechanics was first recognized by Rice [17].
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s-a n on C .(5.19)

The conservation law (5.18) holds for both compressible and incompressible

materials, and is readily confirmed with the aid of the divergence theorem

and the appropriate field equations.

For the present purpose we consider first the Mode I loading case

and assume that the solution to the nonlinear problem for sufficiently

small loads is uniformly approximated by the corresponding solut~uii from

the linear theory, at all material points a finite distance from the crack-

tips. A limit process depending on this assumption enables one to deduce from

(5.18) and from the available solution of the linearized problem the de-

sired small-load amplitude estimate. Since the required calculation is

strictly parallel to one spelled out in detail in [3], we cite the en-

suing estimate directly:

2n a 2bn n 2  2
a 2n-l +o(a ) as a-*0 (5.20)

ZAin-

Here a is the applied normal stress at infinity, 2b is the crack

length, while ui is the shear modulus at infinitesimal deformations.

According to a conclusion reached earlier in this section, the

finite theory - in contrast to linearized elastostatics - predicts that

the crack opens in the vicinity of its tips also for a Mode 11 loading,

at least for a certain range of the hardening parameter. Clearly, if the

solution to the linearized Mode II problem is to approximate its counter-

part in the finite theory uniformly at small loads on every bounded and

closed material point set that excludes the crack-tips, the lengths of

the opening crack-segments would have to tend to zero with the load
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intensity. Making this assumption, invoking the conservation law (5.18)

once again, and appealing to the Mode II results of the linear theory

summarized in (2.12), (2.13), (2.14), one is led to precisely the esti-

mate obtained for Mode I:

2n 2bnn-2

La = bn +o(0 2  (5.21)
4 M 2 n-1

in which a is now the shear stress applied at infinity. The length

parameter L, in view of (5.3), governs the scale of the crack-opening,

which is thus found to be a second-order effect at small shearing loads.

.. . . . . . . .. .. ..... .. .. .. ... .......4..,.
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Appendix: Representation of functions biharmonic in a neighborhood

of infinity.

In this paper a function U is called biharmonic on an open

plane region R, which need not be simply connected, if it is four times

continuously differentiable on 9 and V 4Uf=0 on i.

Let 7Z be a neighborhood of infinity in the (xlx 2)-plane, so

that 7j is the exterior of some circle centered at the origin, and let

7* be the simply-connected domain obtained by deleting from 7( its

intersection with the positive xl-axis. As shown by Muskhelishvili

[14] in his analysis of the structure of the Airy stress function on

multiply connected domains, any function U biharmonic on 7 , whose

partial derivatives of the second and higher orders admit continuous ex-

tensions to 7j, may be represented in the form

U(XlX 2 ) -Re [i (z) + (z)j ,(i

where

T (z) - Azlog z + Blog z+ Y*(z) , 1
r(2)

X(z) - Czlog z+Dlog z+ X*(z)

Here z- xI + ix2 = pe
i  

, log z refers to the principal branch of the

logarithm, while T*(z) and X*(z) are functions analytic on 7j.

Let Al. B1 , C1, D1 and A2, B2 , C2 , D2 denote the real and

imaginary parts of A, B, C, D, respectively. Invoking the Laurent ex-

pansions on ?Z of T*(z) and X*(z), one readily deduces from (1) and



rH

-61-

(2) the representation

U(Xlx 2 ) = Alp2log p - A2 p2

+ [ (B1 + C1 )cos Y+ (B2 + C2 )sin yplog p

+ [(BI - C2 )sin c- (B2 +C 1 )cos IPY

+ Dlog o -D29+ 1 [ajcos Jc0 + b sin Jc

+ cj cos(j - 2 )y+ d sin(j - 2)l]p- j  (3)

valid on 71' the coefficients aj, b,, Cj, d being real constants.

Suppose now U is biharmonic on 72 and hence.continuous on

together with all its partial derivatives up to the fourth order. Then

(3) demands that

A2 =0; B1 -C 2 . 0; B2 +CI=O, D 2=0 (4)

Suppose further that

U(xlx 2) O(1) as P - oo (5)

This requirement evidently yields the additional restrictions

A,=O, B1 +C 1 .0, B2 +C 2 m-0, Dim 0, ajbj c jd j=0 for J<O (6)

In view of (4), (6), the representation (3) finally reduces to
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U(xl,x 2 ) = [a cos-j+bjsinjy+c cos Q-2)tp+d sin(j - 2 )y]p- j  (7)

J=0

This expression is valid on ?Z, the infinite series being uniformly and

absolutely convergent on every closed subset of 71. Thus any function

biharmonic on ?Z and bounded at infinity necessarily admits the re-

presentation (7).
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